Abstract

We developed a statistical theory of zero-count-detector (ZCD), which is defined as a zero-class Poisson under conditions outlined in this paper. ZCD is often encountered in the studies of rare events in physics, health physics, and many other fields where counting of events occurs. We found no acceptable solution to ZCD in classical statistics and affirmed the need for the Bayesian statistics. Several uniform and reference priors were studied, and we derived Bayesian posteriors, point estimates, and upper limits. It was shown that the maximum-entropy prior, containing the most information, resulted in the smallest bias and the lowest risk, making it the most admissible and acceptable among the priors studied. We also investigated application of zero-inflated Poisson and Negative-binomial distributions to ZCD. It was shown using Bayesian marginalization that, under limited information, these distributions reduce to the Poisson distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.