Abstract

Changes in the number of receptors on the cell surface lead to modulations of physiological functions and pharmacological responses of neurons. Recent studies show that delta-opioid peptide (DOP) and mu-opioid peptide (MOP) receptors have distinct subcellular localizations in neurons. In nociceptive small neurons in the dorsal root ganglia, DOP receptors are sorted into neuropeptide-containing secretory vesicles, enabling the stimulus-induced cell surface expression of these receptors. MOP receptors are constitutively expressed on the cell surface. The physical interaction between DOP receptors and MOP receptors seems to be an important mechanism for the modulation of receptor functions. Experiments in animals show that MOP-receptor-mediated spinal analgesia is enhanced and morphine tolerance does not develop when DOP receptor functions are pharmacologically or genetically attenuated. Thus, the delivery and trafficking of DOP receptors are crucial processes that modulate opioid analgesia and tolerance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.