Abstract

Morphine is an exceptionally effective analgesic whose utility is compromised by the development of tolerance and dependence to the drug. Morphine analgesia and dependence are mediated by its activity at the mu opioid peptide (MOP) receptor [1]. The MOP receptor is activated not only by morphine, but also by other opiate drugs such as methadone and endogenous opioids such as endorphins. Morphine, however, is a unique opioid agonist ligand because it fails to induce endocytic trafficking of the MOP receptor [2], whereas the endogenous ligands and methadone do facilitate endocytosis [3]. Using the unique pharmacology of the MOP receptor and its proposed existence as an oligomeric structure [4], we designed a pharmacological cocktail that facilitates endocytosis of the MOP receptor in response to morphine. This cocktail consists of morphine and a small dose of methadone. Importantly, this cocktail, while retaining full analgesic potency, does not promote morphine dependence. We further demonstrate that dependence is reduced, at least in part, because endocytosis of the MOP receptor in response to morphine prevents the upregulation of N-methyl-D-aspartate (NMDA) receptors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.