Abstract
Tumor-associated macrophages (TAMs) of the M2 phenotype are frequently associated with cancer progression. Invasive cancer cells undergoing epithelial-mesenchymal transition (EMT) have a selective advantage as TAM activators. Cyclin D1b is a highly oncogenic splice variant of cyclin D1. We previously reported that cyclin D1b enhances the invasiveness of breast cancer cells by inducing EMT. However, the role of cyclin D1b in inducing macrophage differentiation toward tumor-associated macrophage-like cells remains unknown. This study aimed to explore the relationship between breast cancer cells overexpressing cyclin D1b and TAMs. Mouse breast cancer 4T1 cells were transfected with cyclin D1b variant and co-cultured with macrophage cells in a Transwell coculture system. The expression of characteristic cytokines in differentiated macrophages was detected using qRT-PCR, ELISA and zymography assay. Tumor-associated macrophage distribution in a transplanted tumor was detected by immunofluorescence staining. The proliferation and migration ability of breast cancer cells was detected using the cell counting kit-8 (CCK-8) assay, wound healing assay, Transwell invasion assay, and lung metastasis assay. Expression levels of mRNAs were detected by qRT-PCR. Protein expression levels were detected by Western blotting. The integrated analyses of The Cancer Genome Atlas (TCGA) datasets and bioinformatics methods were adopted to discover gene expression, gene coexpression, and overall survival in patients with breast cancer. After co-culture with breast cancer cells overexpressing cyclin D1b, RAW264.7 macrophages were differentiated into an M2 phenotype. Moreover, differentiated M2-like macrophages promoted the proliferation and migration of breast cancer cells in turn. Notably, these macrophages facilitated the migration of breast cancer cells in vivo. Further investigations indicated that differentiated M2-like macrophages induced EMT of breast cancer cells accompanied with upregulation of TGF-β1 and integrin β3 expression. Breast cancer cells transfected with cyclin D1b can induce the differentiation of macrophages into a tumor-associated macrophage-like phenotype, which promotes tumor metastasis in vitro and in vivo.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have