Abstract
Dictamnine is a representative furan-containing hepatotoxic compound. Administration of dictamnine caused acute liver injury in mice and the metabolic activation of furan to reactive epoxy intermediate was responsible for the hepatotoxicity. This study aimed to characterize the protein adduction by endogenous hepatic aldehydes and investigate its role in dictamnine-induced hepatotoxicity. In the liver sample of dictamnine-treated mice, the protein adduction by five aldehydes was characterized as lysine residue-aldehyde adducts using high-resolution UPLC-Q/Orbitrap MS after exhaustive proteolytic digestion. The levels of protein adduct were increased at 2–3 h after the treatment with dictamnine. The formation of protein adduction increased with increasing doses of dictamnine. Inhibition of the bioactivation by CYP3A inhibitor ketoconazole prevented the protein adduction. Treatment with 2,3-dihydro-dictamnine, an analog of dictamnine that was unable to form the epoxy intermediate, did not lead to an increase in protein adduction. Application of aldehyde dehydrogenase-2 activator ALDA-1 or nucleophilic trapping reagent N-acetyl-L-lysine significantly reduced the protein adduction and attenuated dictamnine-induced liver injury without affecting the bioactivation. In conclusion, the metabolic activation of the furan ring of dictamnine resulted in the protein adduction by multiple hepatic aldehydes and the protein modification played a crucial role in dictamnine-induced liver injury.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have