Abstract
BackgroundThe barriers to access diagnosis and receive treatment, in addition to insufficient case identification and reporting, lead to tuberculosis (TB) spreads in communities, especially among hard-to-reach populations. This study evaluated a community-based active case finding (ACF) strategy for the detection of tuberculosis cases among high-risk groups and general population in China between 2013 and 2015.MethodsThis retrospective cohort study conducted an ACF in ten communities of Dongchuan County, located in northeast Yunnan Province between 2013 and 2015; and compared to 136 communities that had passive case finding (PCF). The algorithm for ACF was: 1) screen for TB symptoms among community enrolled residents by home visits, 2) those with positive symptoms along with defined high-risk groups underwent chest X-ray (CXR), followed by sputum microscopy confirmation. TB incidence proportion and the number needed to screen (NNS) to detect one case were calculated to evaluate the ACF strategy compared to PCF, chi-square test was applied to compare the incidence proportion of TB cases’ demography and the characteristics for detected cases under different strategies. Thereafter, the incidence rate ratio (IRR) and multiple Fisher’s exact test were applied to compare the incidence proportion between general population and high-risk groups. Patient and diagnostic delays for ACF and PCF were compared by Wilcoxon rank sum test.ResultsA total of 97 521 enrolled residents were visited with the ACF cumulatively, 12.3% were defined as high-risk groups or had TB symptoms. Sixty-six new TB patients were detected by ACF. There was no significant difference between the cumulative TB incidence proportion for ACF (67.7/100000 population) and the prevalence for PCF (62.6/100000 population) during 2013 to 2015, though the incidence proportion in ACF communities decreased after three rounds active screening, concurrent with the remained stable prevalence in PCF communities. The cumulative NNS were 34, 39 and 29 in HIV/AIDS infected individuals, people with positive TB symptoms and history of previous TB, respectively, compared to 1478 in the general population. The median patient delay under ACF was 1 day (Interquartile range, IQR: 0–27) compared to PCF with 30 days (IQR: 14–61).ConclusionsThis study confirmed that massive ACF was not effective in general population in a moderate TB prevalence setting. The priority should be the definition and targeting of high-risk groups in the community before the screening process is launched. The shorter time interval of ACF between TB symptoms onset and linkage to healthcare service may decrease the risk of TB community transmission. Furthermore, integrated ACF strategy in the National Project of Basic Public Health Service may have long term public health impact.
Highlights
The barriers to access diagnosis and receive treatment, in addition to insufficient case identification and reporting, lead to tuberculosis (TB) spreads in communities, especially among hard-to-reach populations
There were 66 new TB cases identified under active case finding (ACF) strategy
Our study showed that cumulative incidence of TB in Human immuno-deficiency virus (HIV)/Acquired immune deficiency syndrome (AIDS) was 2941/100000 population, similar to the high incidence reported in countries with high burden of TB and HIV, 0.8/100 per person-years in Tanzania, 1839/100000 to 1936/100000 population in Kenya [24, 25], and 3.3 to 7.4% in newly diagnosed with HIV and known HIV positive individuals in South Africa [26]
Summary
The barriers to access diagnosis and receive treatment, in addition to insufficient case identification and reporting, lead to tuberculosis (TB) spreads in communities, especially among hard-to-reach populations. This study evaluated a community-based active case finding (ACF) strategy for the detection of tuberculosis cases among high-risk groups and general population in China between 2013 and 2015. TB spreads in communities, especially among hard-toreach populations, the barriers to access diagnosis and receive treatment, in addition to insufficient case identification and reporting, lead to the challenge in the achievement of World Health Organization’s (WHO) End TB Strategy and the United Nations’ (UN) Sustainable Development Goals (SDGs) [3, 4]. A systematic review assessed the number of people needed to screen (NNS) in order to detect one case of active TB under ACF strategy, and showed that weighted mean and range of NNS was 669 (15–5594) in the general population, 61 (5–316) for HIV positive individuals, 2223 (range not available) for people with diabetes mellitus (DM), and 40 (7–335) for household contacts in moderate incidence settings [8, 9]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.