Abstract

Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) associates a chloroplast- and a nucleus-encoded subunit (LSU and SSU). It constitutes the major entry point of inorganic carbon into the biosphere as it catalyzes photosynthetic CO2 fixation. Its abundance and richness in sulfur-containing amino acids make it a prime source of N and S during nutrient starvation, when photosynthesis is downregulated and a high RuBisCO level is no longer needed. Here we show that translational attenuation of ClpP1 in the green alga Chlamydomonas reinhardtii results in retarded degradation of RuBisCO during S- and N-starvation, suggesting that the Clp protease is a major effector of RubisCO degradation in these conditions. Furthermore, we show that ClpP cannot be attenuated in the context of rbcL point mutations that prevent LSU folding. The mutant LSU remains in interaction with the chloroplast chaperonin complex. We propose that degradation of the mutant LSU by the Clp protease is necessary to prevent poisoning of the chaperonin. In the total absence of LSU, attenuation of ClpP leads to a dramatic stabilization of unassembled SSU, indicating that Clp is responsible for its degradation. In contrast, attenuation of ClpP in the absence of SSU does not lead to overaccumulation of LSU, whose translation is controlled by assembly. Altogether, these results point to RuBisCO degradation as one of the major house-keeping functions of the essential Clp protease. In addition, we show that non-assembled subunits of the ATP synthase are also stabilized when ClpP is attenuated. In the case of the atpA-FUD16 mutation, this can even allow the assembly of a small amount of CF1, which partially restores phototrophy.

Highlights

  • Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO, EC 4.1.1.39) catalyzes the fixation of CO2, a central reaction of the Calvin–Benson cycle

  • The C. reinhardtii rbcL-G54D (31-4E) and rbcL-W451Opal (18-5B) mutants have been characterized as RuBisCO-less strains in which an unstable large subunits (LSU) fails to assemble and is degraded [27,62,63]

  • When mutant collection of the Niyogi laboratory [68] where RBCS1 and RBCS2 are deleted, together with we examined by western blot the steady-state accumulation levels of Rubisco LSU, we observed no five neighboring genes, none of which appear relevant to photosynthesis or chloroplast biogenesis

Read more

Summary

Introduction

Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO, EC 4.1.1.39) catalyzes the fixation of CO2 , a central reaction of the Calvin–Benson cycle. This key photosynthetic enzyme constitutes the main entry point of CO2 into the biosphere. The most abundant type of RuBisCO complex belongs to class I and is the one present in cyanobacteria, green algae, and plants. It consists of a ~550 kDa complex formed from the assembly of eight large (LSU) and eight small (SSU) subunits, respectively, encoded by a chloroplast localized rbcL and by a small family of nuclear RBCS genes (for a review [2]). SSU functions to stabilize the complex and may modulate the affinity of substrates

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call