Abstract
AbstractOn the basis of five oceanographic cruises carried out in the Eastern Tropical Pacific off Mexico, relationships between the larval fish habitats (areas inhabited by larval fish assemblages) and the environmental circulation scales (mesoscale, seasonal, and interannual) were examined. Analysis of in situ data over a grid of hydrographic stations and oblique zooplankton hauls with bongo net (505 µm) was combined with orthogonal robust functions decomposition applied to altimetry anomalies obtained from satellite. During both cool (March and June) and warm (August and November) periods, Bray‐Curtis dissimilarity Index defined three recurrent larval fish habitats which varied in species composition and extent as a function of the environmental scales. The variability of the Tropical larval fish habitat (characterized by high species richness, and dominated by Vinciguerria lucetia, Diogenichthys laternatus, and Diaphus pacificus) was associated with the seasonal changes. The Transitional‐California Current larval fish habitat (dominated by V. lucetia and D. laternatus, with lower mean abundance and lower species richness than in the Tropical habitat) and Coastal‐and‐Upwelling larval fish habitat (dominated by Bregmaceros bathymaster) was associated mainly with mesoscale activity induced by eddies and with coastal upwelling. During February 2010, the Tropical larval fish habitat predominated offshore and the Transitional‐California Current larval fish habitat was not present, which we attribute to the effect of El Niño conditions. Thus, the mesoscale, seasonal, and interannual environmental scales affect the composition and extension of larval fish habitats.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have