Abstract

The role of focal brain damage as a trigger for autoimmune inflammation in multiple sclerosis (MS) is unclear. In this study we examine mechanisms by which experimental autoimmune encephalomyelitis (EAE) is enhanced by focal brain damage. EAE was produced in Lewis rats by footpad inoculation; focal brain damage, in the form of a cortical cryolesion (cryolesion-EAE), was induced 8 days post-inoculation (d.p.i.). The distribution of inflammation and chemokine production in cryolesion-EAE and EAE-only were compared. Inflammation in the brain, measured by immunocytochemistry for T lymphocytes (W3/13) and microglial activation (MHC class II -OX6), was significantly enhanced in cryolesion-EAE 11-15 d.p.i. (p < 0.01-0.05) but by 20-40 d.p.i., equated with EAE-only. Inflammation in cryolesion-EAE related to breakdown of the blood-brain barrier (BBB) at the site of the cryolesion and also to the corticospinal tracts and thalamus, reflecting the afferent and efferent neuronal connections with the cryolesioned cortex. Semiquantitative RT/PCR dot-blot hybridization assay showed a 6-fold increase in mRNA for specific chemokines in the brain in cryolesion-EAE at 9 d.p.i. (MCP-1) and 11 d.p.i. (MCP-1 and MCP-5) with no significant increase in RANTES, GRO-alpha, or MIP-1alpha. By 14 d.p.i., the levels of MCP-1 and MCP-5 mRNA equated with EAE-only animals. These results suggest that enhancement and location of autoimmune inflammation in the brain following focal cortical injury initially involve chemokines such as the macrophage chemoattractants MCP-1 and MCP-5, and the activities of afferent and efferent neuronal connections with the site of damage. By analogy, similar factors may modulate or reactivate autoimmune inflammation in MS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call