Abstract

This study investigated the role of extracellular cellulose production by Shiga toxin-producing Escherichia coli (STEC) on attachment to lettuce and spinach in different water hardness environments. Two cellulose-producing wild-type STEC strains, 19 (O5:H-) and 49 (O103:H2), and their cellulose-deficient derivatives were used. Strain 49 also produced colanic acid as a constituent of its extracellular polymeric substances. Attached cells were determined by plate counts on the surface and cut edge of the leaves after an attachment period of 2 h at 4°C. Hydrophobicity and surface charge of the cells were determined. Strain 49 attached at levels 0.3 and 0.6 log greater to the surface and 0.9 and 0.4 log greater to the cut edges of spinach compared to strain 19 for both wild-type and cellulose-deficient cells (P > 0.05). Cellulose-producing cells attached more to the surface of lettuce but not of spinach than did cellulose-deficient cells. However, more cellulose-deficient cells attached (at levels 0.66 and 0.3 log greater) to the cut edge of lettuce (representing damaged tissue) than did cellulose-proficient cells (P > 0.05). Colanic acid production was associated with cell surfaces of low hydrophobicity. There was a decreasing level of attachment for the colanic acid-producing strain when water hardness increased from 200 to 1,000 pm on lettuce and spinach leaf surfaces, but no effects were seen for other cells. This decreased attachment was associated with a more negative surface charge. Cells that produced colanic acid were less hydrophobic and exhibited greater attachment to the surface and cut edge of spinach when compared to cells that did not produce colanic acid. Attachment of colanic acid-producing cells to leafy green surfaces was enhanced in higher water hardness environments. These data indicate that attachment of E. coli O157:H7 to leafy greens involves multiple mechanisms that are influenced by the type of leafy green, damage to the leaf, and the water hardness environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call