Abstract

Cell metabolism is a key regulator of human neocortex development and evolution. Several lines of evidence indicate that alterations in neural stem/progenitor cell (NPC) metabolism lead to abnormal brain development, particularly brain size-associated neurodevelopmental disorders, such as microcephaly. Abnormal NPC metabolism causes impaired cell proliferation and thus insufficient expansion of NPCs for neurogenesis. Therefore, the production of neurons, which is a major determinant of brain size, is decreased and the size of the brain, especially the size of the neocortex, is significantly reduced. This review discusses recent progress understanding NPC metabolism, focusing in particular on glucose metabolism, fatty acid metabolism and amino acid metabolism (e.g., glutaminolysis and serine metabolism). We provide an overview of the contributions of these metabolic pathways to brain development and evolution, as well as to the etiology of neurodevelopmental disorders. Furthermore, we discuss the advantages and disadvantages of various experimental models to study cell metabolism in the developing brain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.