Abstract

Carboplatin, [Pt(NH3)2(CBDCA-O,O')], 1, where CBDCA is cyclobutane-1,1-dicarboxylate, is used against ovarian, lung, and other types of cancer. We recently showed (Di Pasqua et al. (2006) Chem. Res. Toxicol. 19, 139-149) that carboplatin reacts with carbonate under conditions that simulate therapy to produce carbonato carboplatin, cis-[Pt(NH3)2(O-CBDCA)(CO3)]2-, 2. We use 13C and 1H NMR and UV-visible absorption spectroscopy to show that solutions containing carboplatin that have been aged in carbonate buffer under various conditions contain 1, 2, and other compounds. We then show that aging carboplatin in carbonate produces compounds that are more toxic to human neuroblastoma (SK-N-SH), proximal renal tubule (HK-2) and Namalwa-luc Burkitt's lymphoma (BL) cells than carboplatin alone. Moreover, increasing the aging time increases the cytotoxicity of the platinum solutions as measured by the increase in cell death. Although HK-2 cells experience a large loss in survival upon exposure to carbonato forms of the drug, they have the highest values of IC50 of the three cell lines studied, so that HK-2 cells remain the most resistant to the toxic effects of the carbonato forms in the culture medium. This is consistent with the well-known low renal toxicity observed for carboplatin in therapy. The uptake rates for normal Jurkat cells (NJ) and cisplatin-resistant Jurkat cells (RJ), measured by inductively coupled plasma mass spectrometry (ICP-MS), are 16.6 +/- 4.2 and 12.3 +/- 4.8 amol of Pt h-1 cell-1, respectively, when exposed to carboplatin alone. However, when these cells are exposed to carboplatin that has been aged in carbonate media, normal Jurkat cells strongly bind/take up Pt at a rate of 14.5 +/- 4.1 amol of Pt h-1 cell-1, while resistant cells strongly bind/take up 5.1 +/- 3.3 amol of Pt h-1 cell-1. Collectively, these studies show that carboplatin carbonato species may play a major role in the cytotoxicity and uptake of carboplatin by cells.

Highlights

  • Platinum drugs by themselves or in combination with other agents are used to treat many types of human cancer [1,2,3,4,5]

  • In attempting to uncover the possible role of carbonate in the mechanism of action of the platinum drugs, we found that a cisplatincarbonato complex forms in tissue culture medium which contains carbonate [43], that the presence of carbonate in a binding buffer dramatically affects the type of cisplatin lesion which forms on DNA [44], and that Jurkat cells are able to selectively modify a cisplatin carbonato complex by an extracellular mechanism [45]

  • The 13C NMR spectra (Figure 1) clearly show that carbonato complexes are formed in the reaction of carboplatin in carbonate buffer

Read more

Summary

Introduction

Platinum drugs by themselves or in combination with other agents are used to treat many types of human cancer [1,2,3,4,5]. In this report we further study the formation of carbonato complexes of carboplatin that form under low (23.8 mM) and high (0.5 M) carbonate conditions by 13C and 1H NMR and UV-visible spectroscopy.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.