Abstract
The uncertainty in predictions from deep neural network analysis of medical imaging is challenging to assess but potentially important to include in subsequent decision-making. Using data from diabetic retinopathy detection, we present an empirical evaluation of the role of model calibration in uncertainty-based referral, an approach that prioritizes referral of observations based on the magnitude of a measure of uncertainty. We consider several configurations of network architecture, methods for uncertainty estimation, and training data size. We identify a strong relationship between the effectiveness of uncertainty-based referral and having a well-calibrated model. This is especially relevant as complex deep neural networks tend to have high calibration errors. Finally, we show that post-calibration of the neural network helps uncertainty-based referral with identifying hard-to-classify observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.