Abstract
Clustered current status data frequently occur in many fields of survival studies. Some potential factors related to the hazards of interest cannot be directly observed but are characterized through multiple correlated observable surrogates. In this article, we propose a joint modeling method for regression analysis of clustered current status data with latent variables and potentially informative cluster sizes. The proposed models consist of a factor analysis model to characterize latent variables through their multiple surrogates and an additive hazards frailty model to investigate covariate effects on the failure time and incorporate intra-cluster correlations. We develop an estimation procedure that combines the expectation-maximization algorithm and the weighted estimating equations. The consistency and asymptotic normality of the proposed estimators are established. The finite-sample performance of the proposed method is assessed via a series of simulation studies. This procedure is applied to analyze clustered current status data from the National Toxicology Program on a tumorigenicity study given by the United States Department of Health and Human Services.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.