Abstract

Evidence for the role of the CACNA1C gene, which encodes for the α-subunit of the cardiac L-type calcium channel CaV1.2, as a cause of the BrS3 variant of Brugada syndrome (BrS) is contradictory. The purpose of this study was to define in a large BrS cohort the yield of molecular screening and to test whether appropriate patient selection could improve clinical utility. A total of 709 patients were included in this study. BrS probands (n = 563, consecutively referred) underwent CACNA1C sequencing. Two matched cohorts where defined: discovery cohort (n = 200) and confirmation cohort (n = 363). In addition, the clinical phenotypes of a matched SCN5A-positive BrS cohort (n = 146) were included for comparative genotype-phenotype correlation. In the discovery cohort, we identified 11 different rare variants in 9 patients; 10 of the variants (5%) were considered potentially causative based on their frequency in the general population. However, American College of Medical Genetics criteria were unable to classify the majority (80%) of them, which eventually were labeled as variants of unknown significance (VUS). Functional studies revealed a loss of function for 9 variants, pointing to a prevalence of CACNA1C causative variants in 4% of the discovery cohort. Genotype-phenotype correlation showed that pathogenic variants are significantly more frequent in patients with shorter QTc (12.9% vs 2.2% in patients with QTc <390 ms). CACNA1C is an infrequent but definitive cause of BrS typically associated with short QT. Functional studies are highly relevant to improve variant interpretation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call