Abstract

Nitric-oxide synthases (NOS) are homodimeric proteins and can form an intersubunit Zn(4S) cluster. We have measured zinc bound to NOS purified from pig brain (0.6 mol/mol of NOS) and baculovirus-expressed rat neuronal NOS (nNOS) (0.49 +/- 0.13 mol/mol of NOS), by on-line gel-filtration/inductively coupled plasma mass spectrometry. Cobalt, manganese, molybdenum, nickel, and vanadium were all undetectable. Baculovirus-expressed nNOS also bound up to 2. 00 +/- 0.58 mol of copper/mol of NOS. Diethylenetriaminepentaacetic acid (DTPA) reduced the bound zinc to 0.28 +/- 0.07 and the copper to 0.97 +/- 0.24 mol/mol of NOS. Desalting of samples into thiol-free buffer did not affect the zinc content but completely eliminated the bound copper (</=0.02 mol/mol of NOS). Most (> or =75%) of the bound zinc was released from baculovirus-expressed rat nNOS by p-chloromercuriphenylsulfonic acid (PMPS). PMPS-treated nNOS was strongly (90 +/- 5%) inactivated. To isolate functional effects of zinc release from other effects of PMPS, PMPS-substituted thiols were unblocked by excess reduced thiol in the presence of DTPA, which hindered reincorporation of zinc. The resulting enzyme contained 0.12 +/- 0.05 mol of zinc but had a specific activity of 426 +/- 46 nmol of citrulline.mg(-1).min(-1), corresponding to 93 +/- 10% of non-PMPS-treated controls. PMPS also caused dissociation of nNOS dimers under native conditions, an effect that was blocked by the pteridine cofactor tetrahydrobiopterin (H(4)biopterin). H(4)biopterin did not affect zinc release. Even in the presence of H(4)biopterin, PMPS prevented conversion of NOS dimers to an SDS-resistant form. We conclude that zinc binding is a prerequisite for formation of SDS-resistant NOS dimers but is not essential for catalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.