Abstract

Autotaxin (ATX) is an enzymatic with lysophospholipase D (lysoPLD) activity. We investigated the role of ATX in high glucose (HG)-induced human retinal pigment epithelial (ARPE-19) cells to explore the pathogenesis of diabetic retinopathy (DR). We performed a quantitative real-time polymerase chain reaction, Western blotting, immunocytochemistry, enzyme-linked immunosorbent assay, cell permeability assay, and transepithelial electrical resistance measurement in HG-induced ARPE-19 cells and compared their results with those of normal glucose and osmotic pressure controls. ATX expression and its lysoPLD activity, barrier function, and expression of vascular endothelial growth factor receptors VEGFR-1 and VEGFR-2 were downregulated, while fibrotic responses, cytoskeletal reorganization, and transforming growth factor-β expression were upregulated, in the HG group. Our results suggest that HG induces intracellular ATX downregulation, barrier dysfunction, and fibrosis, which are involved in early DR and can be targeted for DR treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call