Abstract

Exposure to ionizing radiation can result in the development of a number of diseases, including cancer, cataracts and neurodegenerative pathologies. Certain occupational groups are exposed to both natural and artificial sources of radiation as a consequence of their professional activities. The development of non-invasive biomarkers to assess the risk of exposure to ionizing radiation for these groups is of great importance. In this context, our objective was to identify epigenetic and molecular biomarkers that could be used to monitor exposure to ionizing radiation. The impact of X-ray exposure on the miRNAs profile and the level of cf mtDNA were evaluated using the RT-PCR method. The levels of pro-inflammatory cytokines in their blood were quantified using the ELISA method. A significant decrease in miR-19a-3p, miR-125b-5p and significant increase in miR-29a-3p was observed in the blood plasma of individuals exposed to X-ray. High levels of pro-inflammatory cytokines and cf mtDNA were also detected. In silico identification of potential targets of these miRNAs was conducted using MIENTURNET. VDAC1 and ALOX5 were identified as possible targets. Our study identified promising biomarkers such as miRNAs and cf mtDNA that showed a dose-dependent effect of X-ray exposure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.