Abstract
Alzheimer's disease (AD) has historically been considered to arise due to the specific dysfunction and pathology of neurons in brain areas related tocognition. Recent progress indicates that astrocytes play an important role in neurodegenerative processes underlying AD. In this review, we focus on the different glucose metabolism profiles between astrocytes and neurons. In AD, a variety of CNS insults, such as the presence of amyloid protein, trigger reactive astrogliosis, which disrupts normal glycolytic activity in these cells. The compromise of the astrocytic metabolism in turn weakens the integrity of astrocytic-neuronal partnership, damages the normal brain homeostasis, impairs clearance of amyloid, promotes cytokine release and other inflammatory mediators, and over time, leads to neurodegeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.