Abstract

The profiles of self-polarization effect (SPE) of impurity doped GaAs quantum dot (QD) have been investigated under the governance of variable effective mass, variable dielectric constant and anisotropy of the system. Presence of noise has also been considered to inspect how it interplays with above parameters in modulating SPE. Noise term possesses a Gaussian white character and it has been introduced to the system via two different pathways; additive and multiplicative. The spatially-varying effective mass and spatially-varying dielectric constant mainly affect SPE quantitatively in comparison with the fixed ones. A changing anisotropy of the system also affects SPE. However, the extent to which SPE is being affected evidently depends on presence/absence of noise and also on the pathway through which noise has been applied. The findings of the study reveal authentic routes to tailor the SPE of doped QD system through the interplay between noise, anisotropy and spatially-varying effective mass and dielectric constant of the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call