Abstract

A detailed understanding of the vibrational heat transfer mechanisms between solids is essential for the efficient thermal engineering and control of nanomaterials. We investigate the frequency dependence of anharmonic scattering and interfacial thermal conduction between two acoustically mismatched solids in planar contact by calculating the spectral decomposition of the heat current flowing through an interface between two materials. The calculations are based on analyzing the correlations of atomic vibrations using the data extracted from nonequilibrium molecular dynamics simulations. Inelastic effects arising from anharmonic interactions are shown to significantly facilitate heat transfer between two mass-mismatched face-centered-cubic lattices even at frequencies exceeding the cutoff frequency of the heavier material due to (i) enhanced dissipation of evanescent vibrational modes and (ii) frequency-doubling and frequency-halving three-phonon energy transfer processes at the interface. The results provide substantial insight into interfacial energy transfer mechanisms, especially at high temperatures, where inelastic effects become important and other computational methods are ineffective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.