Abstract

Epoxy is among the most important polymers, which is extensively employed in various technologies and applications. Nevertheless, epoxy polymers present low thermal conductivities and thus the enhancement of their thermal conductivity is an important research topic. Carbon nanotubes (CNTs) owing to their excellent thermal conductivities have been widely considered for the enhancement of the thermal conduction of epoxy polymers. In this work, we developed a combined molecular dynamics finite element multiscale modelling to investigate the heat transfer along CNT/epoxy nanocomposites. To this aim, the heat transfer between the CNT and epoxy atoms at the nanoscale was explored using the atomistic classical molecular dynamics simulations. In this case, we particularly evaluated the interfacial thermal conductance between the polymer and fillers. We finally constructed the continuum models of polymer nanocomposites representative volume elements using the finite element method in order to evaluate the effective thermal conductivity. The developed multiscale modelling enabled us to systematically analyze the effects of CNT fillers geometry (aspect ratio), diameter and volume fraction on the effective thermal conductivity of nanocomposites. Our results suggest that the interfacial thermal conductance between the CNT additives and epoxy polymer dominate the heat transfer mechanism at the nanoscale. The obtained findings in this study provide good vision regarding the enhancement of thermal conductivity of polymeric materials using highly conductive nanofillers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.