Abstract

The nearest-neighbor entanglement of the evolved state of an asymmetric quantum XY spin chain, in a transverse time-dependent field, exhibits criticalities (dynamical phase transitions) as the initial field parameter is varied at a given fixed time. After a discussion of the dynamical phase transition, we investigate the extent to which the role of an information-theoretic quantum correlation measure, called quantum discord, can be used to understand the entanglement dynamics in this spin model. We show that quantum discord can be associated with the collapse and revival of nearest-neighbor entanglement exhibited in the critical behavior. This behavior of quantum discord leads to the broader question of whether certain classes of measures of nonclassical correlation can help to understand the non-generic features of entanglement in a given system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.