Abstract

We study the dynamics of entanglement in the infinite asymmetric $XY$ spin chain, in an applied transverse field. The system is prepared in a thermal equilibrium state (ground state at zero temperature) at the initial instant, and it starts evolving after the transverse field is completely turned off. We investigate the evolved state of the chain at a given fixed time, and show that the nearest-neighbor entanglement in the chain exhibits a critical behavior (which we call a dynamical phase transition), controlled by the initial value of the transverse field. The character of the dynamical phase transition is qualitatively different for short and long evolution times. We also find a nonmonotonic behavior of entanglement with respect to the temperature of the initial equilibrium state. Interestingly, the region of the initial field for which we obtain a nonmonotonicity of entanglement (with respect to temperature) is directly related to the position and character of the dynamical phase transition in the model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.