Abstract

The formation of isothermal ω phase precipitates and its influence on subsequent fine-scale α precipitation is investigated in a metastable β-titanium alloy, Ti-10V-2Fe-3Al. Atom-probe tomography and high-resolution transmission electron microscopy reveal that the rejection of Al, a potent α stabilizer, from the growing isothermal ω precipitates at 330°C, aids in the formation of α precipitates. Additionally, the presence of α/ω and α/β interfaces conclusively establish that these α precipitates form at the β/ω interface. Interestingly, the local Al pile-up at this interface results in a substantially higher than equilibrium Al content within the α precipitates at the early stages of formation. This can be rationalized based on a novel three-phase β+ω+α metastable equilibrium at a lower annealing temperature (330°C, below the ω solvus). Subsequent annealing at a higher temperature (600°C, above the ω solvus), dissolves the ω precipitates and re-establishes the two-phase β+α equilibrium in concurrence with solution thermodynamic predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.