Abstract

Rates of organic carbon oxidation in marine sediments were determined for the continental margins of northwest Mexico and Washington State, with the goal of assessing the role of oxygen in the preservation of organic matter on a margin with a strong oxygen-deficient zone and on a typical western continental margin. Total carbon oxidation rates (including rates for individual electron acceptors: O 2, NO 3 −, and SO 4 =) were determined at depths ranging from 100 to 3000 m on both margins. Carbon oxidation rates were generally higher on the Washington margin than on the Mexican margin. The relative importance of the different electron acceptors varied across the two margins and was related primarily to the availability of O 2 and NO 3 − from the overlying water. The relative contribution of O 2 consumption increased in deeper sediments (>2000 m) as aerobic processes began to dominate the total carbon oxidation rate. Denitrification rates were highest in Washington sediments; however, denitrification represented a larger fraction of the total carbon oxidation rate in the Mexican sediments (∼40% for Mexico vs. ∼30% for Washington). Sulfate reduction accounted for as much as 79% of the total carbon oxidation rate in shallow sediments and less than 20% in deep sediments on both margins. The offshore trends in carbon oxidation rate appeared to be related to the organic carbon input rate. Pore-water O 2 and NO 3 − penetration depths were shallowest in nearshore stations and increased offshore. Regeneration ratios of C:N:P reveal “non-Redfield” behavior on both margins. Carbon budgets for the two margins demonstrate that off Mexico, a much greater percentage of the organic matter produced in the surface ocean reached the sediments (>15% vs. <8% for Mexico and Washington, respectively). On the Mexican margin, ∼8% of the primary production escaped oxidation in the surface sediments to be permanently buried, as compared with only ∼1.2% of the primary production on the Washington margin. This suggests that oxygen-deficient conditions on Mexican margin are linked to enhanced carbon preservation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call