Abstract

Monoamines exert diverse functions in various cells in peripheral organs as well as in the central nervous system. 5-Hydroxy-l-tryptophan (5-HTP) has been simply regarded as a precursor of serotonin, and it is believed that the biological significance of 5-HTP is essentially ascribable to the production of serotonin. Systemic treatment with 5-HTP is often applied to patients with low serotonin levels in the brain. Here we show that endogenous and exogenous 5-HTP but not serotonin induced the development of microvilli in the gut villi epithelium. In contrast, serotonin but not 5-HTP regulated phagocytosis by macrophages. 5-HTP specifically induced actin remodeling and decreased phosphorylation of extracellular signal-regulated kinase (ERK) in the gut, whereas serotonin stimulated actin remodeling and increased ERK phosphorylation in macrophages. Functionally, inhibition of ERK activity promoted the development of microvilli in the gut and ameliorated phagocytosis by macrophages. Thus, 5-HTP and serotonin contribute to distinct cell-type-specific functions via common mediators. Our study might create an opportunity to explore the effects of exogenously applied 5-HTP in humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.