Abstract

In this work, a multi-scale approach was applied to reveal the evolution mechanisms of the δ (Ni3Nb) phase and the resultant mechanical responses in wire-arc additive manufactured (WAAM) Inconel (IN) 718. Several heat treatment strategies, consist of homogenization, intermediate heat treatment and aging process, were firstly conducted to produce δ phases with different characteristics. The early evolution of the δ phase was then analyzed in detail via transmission electron microscopy. The nanoindentation and tensile tests were also used to verify the strengthen response of δ phase. Moreover, a crystal plasticity finite element (CPFE) model, taking into account the different configurations of δ phase, was developed to study and predict the micro deformation behavior. Results revealed that when the intermediate heat treatment time exceeded 1 h, the formation of the main strengthening phase γ" was constrained by the δ phase, accompanied by the coarsening of γ". The decrease of γ" phase and the destruction of coherent γ"/γ interface are the main causes of strength loss in the WAAMed IN718. The intergranular dislocation transmission was hindered by the δ phase, thereby increasing the grain boundary strength. However, the needle-like δ phase within the grain may cause premature fracture due to strain localization, thereby reducing the material properties. The evolution mechanisms of the δ phase obtained in this study provides theoretical guidance for the optimization of the microstructures and mechanical properties of WAAM Inconel 718.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call