Abstract
BackgroundPremenopausal women have a lower risk of hypertension compared to age-matched men and postmenopausal women. P2Y2 and P2Y4 purinoceptor can be considered potential contributors to hypertension due to their emerging roles in regulating renal tubular Na+ transport. Activation of these receptors inhibits epithelial Na+ channel activity (ENaC) via a phospholipase C (PLC)-dependent pathway resulting in natriuresis. We recently reported that activation of P2Y2 and P2Y4 receptors in the renal medulla by UTP promotes natriuresis in male and ovariectomized (OVX) rats, but not in ovary-intact females. This led us to hypothesize that ovary-intact females have greater basal renal medullary activity of P2 (P2Y2 and P2Y4) receptors regulating Na+ excretion compared to male and OVX rats.MethodsTo test our hypothesis, we determined (i) the effect of inhibiting medullary P2 receptors by suramin (750 μg/kg/min) on urinary Na+ excretion in anesthetized male, ovary-intact female, and OVX Sprague Dawley rats, (ii) mRNA expression and protein abundance of P2Y2 and P2Y4 receptors, and (iii) mRNA expression of their downstream effectors (PLC-1δ and ENaCα) in renal inner medullary tissues obtained from these three groups. We also subjected cultured mouse inner medullary collecting duct cells (segment 3, mIMCD3) to different concentrations of 17ß-estradiol (E2, 0, 10, 100, and 1000 nM) to test whether E2 increases mRNA expression of P2Y2 and P2Y4 receptors.ResultsAcute P2 inhibition attenuated urinary Na+ excretion in ovary-intact females, but not in male or OVX rats. We found that P2Y2 and P2Y4 mRNA expression was higher in the inner medulla from females compared to males or OVX. Inner medullary lysates showed that ovary-intact females have higher P2Y2 receptor protein abundance, compared to males; however, OVX did not eliminate this sex difference. We also found that E2 dose-dependently upregulated P2Y2 and P2Y4 mRNA expression in mIMCD3.ConclusionThese data suggest that ovary-intact females have enhanced P2Y2 and P2Y4-dependent regulation of Na+ handling in the renal medulla, compared to male and OVX rats. We speculate that the P2 pathway contributes to facilitated renal Na+ handling in premenopausal females.
Highlights
Women are largely protected from hypertension during their premenopausal age, compared to age-matched men [1]
Given that the female sex steroid, E2, has an established role in mediating sex differences in cardiovascular and renal disease females [4,5,6,7], we investigated the impact of E2 treatment of mouse inner medullary collecting duct segment 3 cells on P2Y2 and P2Y4 receptor mRNA expression
Renal inner medullary P2Y2 and P2Y4 receptor mRNA expression We determined P2Y2 and P2Y4 receptor expression in inner medullary tissues from kidneys obtained from male, ovary-intact female, and OVX rats
Summary
Women are largely protected from hypertension during their premenopausal age, compared to age-matched men [1]. Activation of P2Y2 and P2Y4 purinoceptors by ATP increases intracellular Ca2+ and reduces epithelial Na+ channel (ENaC) activity in collecting ducts via phospholipase C (PLC), resulting in a natriuretic effect [10, 11, 15, 16]. P2Y2 and P2Y4 purinoceptor can be considered potential contributors to hypertension due to their emerging roles in regulating renal tubular Na+ transport. Activation of these receptors inhibits epithelial Na+ channel activity (ENaC) via a phospholipase C (PLC)-dependent pathway resulting in natriuresis. This led us to hypothesize that ovary-intact females have greater basal renal medullary activity of P2 (P2Y2 and P2Y4) receptors regulating Na+ excretion compared to male and OVX rats
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.