Abstract

Activation of P2Y2 receptor (P2Y2-R) in inner medullary collecting duct (IMCD) of rat decreases AVP-induced water flow and releases PGE(2). We observed that dehydration of rats decreases the expression of P2Y2 receptor in inner medulla (IM) and P2Y2-R-mediated PGE(2) release by IMCD. Because circulating vasopressin (AVP) levels are increased in dehydrated condition, we examined whether chronic infusion of desmopressin (dDAVP) has a similar effect on the expression and activity of P2Y2-R. Groups of rats were infused with saline or dDAVP (5 or 20 ng/h sc, 5 or 6 days) via osmotic minipumps and euthanized. Urine volume, osmolality, and PGE(2) metabolite content were determined. AQP2- and P2Y2- and V2-R mRNA and/or protein in IM were quantified by real-time RT-PCR and immunoblotting, respectively. P2Y2-R-mediated PGE(2) release by freshly prepared IMCD was assayed using ATPgammaS as a ligand. Chronic dDAVP infusion resulted in low-output of concentrated urine and significantly increased the AQP2 protein abundance in IM. On the contrary, dDAVP infusion at 5 or 20 ng/h significantly decreased P2Y2-R protein abundance (approximately 40% of saline-treated group). In parallel, the relative expression of P2Y2-R vs. AQP2- or V2-R mRNA was significantly decreased. Furthermore, the P2Y2-R-mediated PGE(2) release by IMCD was significantly decreased in rats infused 20 ng/h but not 5 ng/h of dDAVP. Urinary PGE(2) metabolite excretion, however, did not change with dDAVP infusion. In conclusion, chronic dDAVP infusion decreases the expression and activity of P2Y2-R in IM. This may be due to a direct effect of dDAVP or dDAVP-induced increase in medullary tonicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.