Abstract

Under investigation in this paper is a discrete (2+1)-dimensional Ablowitz-Ladik equation, which is used to model the nonlinear waves in the nonlinear optics and Bose-Einstein condensation. Employing the Kadomtsev-Petviashvili hierarchy reduction, we obtain the rogue wave solutions in terms of the Gramian. We graphically study the first-, second- and third-order rogue waves with the influence of the focusing coefficient and coupling strength. When the value of the focusing coefficient increases, both the peak of the rogue wave and background decrease. When the value of the coupling strength increases, the rogue wave raises and decays in a shorter time. High-order rogue waves are exhibited as one single highest peak and some lower humps, and such lower humps are shown as the triangular and circular patterns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.