Abstract

Under investigation in this paper is a variable-coefficient derivative nonlinear Schrodinger (vc-DNLS) equation governing the femtosecond pulses in the inhomogeneous optical fibers or nonlinear Alfven waves in the inhomogeneous plasmas. Higher-order breather and rogue wave solutions of the vc-DNLS equation are obtained via the variable-coefficient modified Darboux transformation. Two types of the breather interactions (the head-on and overtaking collisions) are exhibited with different spectral parameters. By suitably choosing the inhomogeneous functions, the parabolic breather, periodic breather, breather amplification and breather evolution are demonstrated. Furthermore, the characteristics of the higher-order fundamental rogue wave, periodic rogue wave and composite rogue wave are graphically discussed. Additionally, the nonlinear tunneling of the higher-order breathers and rogue waves are studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call