Abstract

Renewable energy is spotlighted as a resource to replace fossil fuels, and among the resources, active research on hydrogen energy is ongoing. Various methods have been developed to produce hydrogen energy using photoreduction processes. In this study, we synthesized β-phase iron oxyhydroxide (β-FeOOH) using a hydrothermal method with an optimal synthesis time and investigated its photofunctional properties, including hydrogen production. The obtained samples were characterized and compared with reference data. X-ray powder diffraction results corresponded to the peaks of the reference data. A rod structure was confirmed by scanning electron microscopy, and no impurities were observed. The band-gap energy of β-FeOOH was calculated as 1.8–2.6 eV. A photoreduction process was performed based on a photo-Fenton reaction to produce hydrogen by irradiating ultraviolet (UV) on β-FeOOH. The synthesized β-FeOOH was subjected to UV irradiation for 24 h to produce hydrogen, and we confirmed that hydrogen was successfully produced. The properties of β-FeOOH were evaluated after UV irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.