Abstract

The development of polyimide (PI) composites, particularly for use in aerospace and tribological applications, has gained importance over the past decades. However, there have been scarce studies on the ultraviolet (UV) or atomic oxygen (AO) irradiation characteristics of the polyimide composites, the understanding of which may aid in expanding its application in space environment. To study the irradiated effects of UV and AO on the tribological behaviour of the PI composites, glass fibers (GF)-reinforced PI composites filled with Talc were irradiated by UV or AO in a ground based simulation system. Glass fibers (GF) reinforced PI composites filled with talc were fabricated by means of a hot press molding technique. The volume contents of the talc (10, 20, 30 %) were chosen to study the effects of filler content on the tribological behavior of the composites, while the proportion of the glass fiber was kept at 15 vol %. To contrast the different effects of UV and AO irradiation on the tribological properties of the composites, experiments without irradiation and after UV or AO irradiation were conducted. The specimens of the composites were irradiated with UV for a period of 4h, while AO irradiation chosen for 6h. Dynamic mechanical analysis (DMA) and thermal gravimetric analysis (TGA) measurements were conducted. The friction and wear behaviors of the composites, rotating against GCr15 steel balls, were investigated on a ball-on-disk test rig. at room temperature and at a rotating speed of 0.1256 m/s and a load of 1N. Experimental results revealed that the composites exhibited high modulus and wear rate values with increasing talc content, but low coefficients of friction (COF). After AO irradiation, the COF of the composites increased, but UV irradiation had no obvious effect on the tribological property of the composites. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) study of the composite surface showed that the chemical composition of the surface changed after UV irradiation because of the photooxidation and rough surface or even mountain-like structures were formed after AO erosion. The experiments indicated that the different space environments had an important effect on the tribological properties of the polymer composites. It is expected that this study may help expand the application of the polyimide composites in the field of space.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call