Abstract

Mechanics lies at the heart of many of the underpinnings of modern technological civilization: materials, infrastructure, transportation, health and security. The mechanics of dynamic failure processes also has a major bearing on the potential catastrophes that threaten civilization, including airbursts and major asteroid impacts. Recent events (such as the Chelyabinsk meteoroid) have demonstrated the need to understand major impact and fragmentation events. Many of the fundamental problems of current interest in national security also involve impact and fragmentation, typically studied through large-scale computational simulations. In the Murray lecture, these issues were addressed by describing fundamental high-strain-rate experiments, high-speed visualization, theoretical and computational modeling of failure processes, and simulations of asteroid damage and disruption. This paper focuses on experimental results on meteorites and a basalt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.