Abstract
In this paper, a computational approach based on numerical dissipation is proposed to simulate rocking blocks. A rocking block is idealized as a solid body interacting with its foundation through a contact-based formulation. An implicit time integration scheme with numerical dissipation, set to optimally treat dissipation in contact problems, is employed. The numerical dissipation is ruled by the time step and the rocking dissipative phenomenon at impacts is accurately predicted without any damping model. A broad numerical campaign is conducted to define a regression law in analytic form for the setting of the time step, depending on the block size and aspect ratio, the contact stiffness, as well as the coefficient of restitution selected. The so-obtained regression law appears accurate and an a posteriori validation with cases not in the training dataset confirms the effectiveness of the approach. Finally, the comparison with available experimental tests highlights the approach efficacy for free rocking and harmonic loading cases (in a deterministic sense), and for earthquake-like loading cases (in a statistical sense). It is found that rocking blocks with sizes of interest for structural engineering (e.g., cultural heritage structures) can be simulated with time steps within 10-3 ÷ 10-1s, so allowing very fast computations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have