Abstract
The destruction of rock under the condition of a close submerged jet has become a hot topic of scientific research and engineering application in the past decade. With the unremitting efforts of a large number of experts and scholars around the world, gratifying progress has been made in the research of computational fluid dynamics (CFD) on the internal and external flow fields of the jet nozzle, the theoretical derivation of rock mechanics on the fracture initiation and propagation criteria of hydraulic fracturing, and the numerical simulation of jet erosion mechanism under the coupling of fluid and solid fields, however, for the rock mechanics hydraulic fracturing cutting engineering scale of non-oil drilling fracturing technology, the research on the fluid-solid coupling boundary conditions of fracturing fluid and hard dense rock under the flow state conditions of the submerged field inside and outside the borehole is not sufficient. In the calculation of the fluid-solid coupling boundary flow field under the non-submerged jet state, the control equation with Reynolds number between 2300-4000 shall be selected, while it belongs to the laminar flow state in the stage of hole sealing and pressurised fracturing. Therefore, Von-Mises equivalent plastic stress is selected in the mechanical model to calibrate the failure state of the rock-solid boundary, and the control equations of laminar flow and turbulent flow are selected to calibrate the fluid boundary. The mechanism of different stages of rock breaking by hydraulic fracturing jet can be further analysed in detail, and Comsol 6.0 multi-physical field simulation software is selected for verification. The research results will help deepen the understanding of rock breaking mechanism by jet and optimise the selection of parameters for field construction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.