Abstract

ABSTRACTIn this paper, we propose two kinds of robustness concepts by virtue of the scalarization techniques (Benson’s method and elastic constraint method) in multiobjective optimization, which can be characterized as special cases of a general non-linear scalarizing approach. Moreover, we introduce both constrained and unconstrained multiobjective optimization problems and discuss their relations to scalar robust optimization problems. Particularly, optimal solutions of scalar robust optimization problems are weakly efficient solutions for the unconstrained multiobjective optimization problem, and these solutions are efficient under uniqueness assumptions. Two examples are employed to illustrate those results. Finally, the connections between robustness concepts and risk measures in investment decision problems are also revealed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.