Abstract

AbstractNear-surface wind speed observations from 30 manned meteorological stations and 26 automatic weather stations over the Antarctic Ice Sheet are used to examine the robustness of wind speed climatology in six recent global reanalysis products: the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), the Japan Meteorological Agency 55-Year Reanalysis (JRA-55), the Climate Forecast System Reanalysis (CFSR), the National Centers for Environmental Prediction–U.S. Department of Energy (DOE) Reanalysis 2 (NCEP2), and the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) and fifth-generation reanalysis (ERA5). Their skills for representing near-surface wind speeds vary by season, with better performance in summer than in winter. At the regional scale, all reanalysis datasets perform more poorly for the magnitude, but better for their year-to-year changes in wind regimes in the escarpment than the coastal and plateau regions. By comparison, ERA5 has the best performance for the monthly averaged wind speed magnitude and the interannual variability of the near-surface wind speed from 1979 onward. Intercomparison exhibits high and significant correlations for annual and seasonal wind speed Antarctic-wide averages from different datasets during their overlapping timespans (1980–2018), despite some regional disagreements between the different reanalyses. Furthermore, all of the reanalyses show positive trends of the annual and summer wind speeds for the 1980–2018 period, which are linked with positive polarity of the southern annular mode.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.