Abstract
Control chart pattern recognition is a critical issue in statistical process control, as unnatural patterns on control charts are often associated with specific assignable causes adversely affecting the process. Several researchers have recently applied neural networks to pattern recognition for control charts. However, nearly all studies in this area assume that the in‐control process data in the control charts follow a normal distribution. This assumption contradicts the facts of practical manufacturing situations. This paper investigates how non‐normality affects the performance of neural network based control chart pattern recognition models. Extensive performance evaluation was carried out using simulated data with various non‐normalities. The non‐normality was measured in skewness and kurtosis. Numerical results indicate that the neural network based control chart pattern recognition models still perform well in a non‐normal distribution environment in terms of recognition accuracy and speed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have