Abstract
We establish the robustness of exponential dichotomies for evolution families of linear operators in a Banach space, in the sense that the existence of an exponential dichotomy persists under sufficiently small linear perturbations. We note that the evolution families may come from nonautonomous differential equations involving unbounded operators. We also consider the general case of a noninvertible dynamics, thus including several classes of functional equations and partial differential equations. Moreover, we consider the general cases of nonuniform exponential dichotomies and of dichotomies that may exhibit stable and unstable behaviors with respect to arbitrary asymptotic rates $e^{c\rho(t)}$ for some function $\rho(t)$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.