Abstract
For a linear equation v ′ = A ( t ) v we consider general dichotomies that may exhibit stable and unstable behaviors with respect to arbitrary asymptotic rates e c ρ ( t ) for some function ρ ( t ) . This includes as a special case the usual exponential behavior when ρ ( t ) = t . We also consider the general case of nonuniform exponential dichotomies. We establish the robustness of the exponential dichotomies in Banach spaces, in the sense that the existence of an exponential dichotomy for a given linear equation persists under sufficiently small linear perturbations. We also establish the continuous dependence with the perturbation of the constants in the notion of dichotomy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.