Abstract

In this paper we propose a new family of estimators, Minimum Density Power Divergence Estimators (MDPDE), as a robust generalization of maximum likelihood estimators (MLE) for the loglinear model with multinomial sampling by using the Density Power Divergence (DPD) measure introduced by Basu et al. (1998). Based on these estimators, we further develop two types of confidence intervals (asymptotic and bootstrap ones), as well as a new robust family of Wald-type test statistics for testing a nested sequence of loglinear models. Furthermore, we study theoretically the robust properties of both the MDPDE as well as Wald-type tests through the classical influence function analysis. Finally, a simulation study provides further confirmation of the validity of the theoretical results established in the paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.