Abstract
Different methods to obtain individual scores from multiple item latent variable models exist, but their performance under realistic conditions is currently underresearched. We investigate the performance of the regression method, the Bartlett method, the Kalman filter, and the mean score under misspecification in autoregressive panel models. Results from three simulations show different patterns of findings for the mean absolute error, for the correlations between individual scores and the true scores (correlation criterion), and for the coverage in our settings: a) all individual score methods are generally quite robust against the chosen misspecification in the loadings, b) all methods are similarly sensitive to positively skewed as well as leptokurtic response distributions with regard to the correlation criterion, c) only the mean score is not robust against an integrated trend component, and d) coverage for the mean score is consistently below the nominal value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Structural Equation Modeling: A Multidisciplinary Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.