Abstract

Randomized trials with continuous outcomes are often analyzed using analysis of covariance (ANCOVA), with adjustment for prognostic baseline covariates. The ANCOVA estimator of the treatment effect is consistent under arbitrary model misspecification. In an article recently published in the journal, Wang et al proved the model-based variance estimator for the treatment effect is also consistent under outcome model misspecification, assuming the probability of randomization to each treatment is 1/2. In this reader reaction, we derive explicit expressions which show that when randomization is unequal, the model-based variance estimator can be biased upwards or downwards. In contrast, robust sandwich variance estimators can provide asymptotically valid inferences under arbitrary misspecification, even when randomization probabilities are notequal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.