Abstract

A robustness of a thin-foil tailored hole target is demonstrated by particle simulations in laser-produced proton generation. The hole target has a hole at the target rear surface. When an intense short pulse laser illuminates the thin-foil target with the hole, transverse edge fields of an accelerated electron cloud and an ion cloud are shielded by a protuberant part of the hole so that the proton beam divergence is suppressed [Sonobe et al., Phys. Plasmas 12, 073104 (2005)]. This paper presents the robustness of the hole target against laser parameter changes in a laser spot size and in a laser pulse length against a contaminated proton source layer and against a laser alignment error. The 2.5-dimensional particle-in-cell simulations also show that a multiple-hole target is robust against a laser alignment error and a target positioning error. The multihole target may serve as a robust target for practical uses to produce a collimated proton beam.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.