Abstract
Suppression effect of proton beam divergence is numerically demonstrated in a tailored thin foil target with a hole at the opposite side of laser illumination. When an intense short pulse laser illuminates the thin foil target with the hole, edge effects of an accelerated electron cloud and an ion source cloud are eliminated by a protuberant part of the hole: the edge effects of the electron and ion-source clouds induce the proton beam divergence. Therefore the transverse proton beam divergence was suppressed well. In this study, we present the robustness of the hole target against laser parameter changes in a laser spot size and a laser pulse length, against a contaminated proton source layers, the laser alignment error, and the target positioning error by using particle-in-cell simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.