Abstract

This paper is concerned with robust estimation under moment restrictions. A moment restriction model is semiparametric and distribution-free; therefore it imposes mild assumptions. Yet it is reasonable to expect that the probability law of observations may have some deviations from the ideal distribution being modeled, due to various factors such as measurement errors. It is then sensible to seek an estimation procedure that is robust against slight perturbation in the probability measure that generates observations. This paper considers local deviations within shrinking topological neighborhoods to develop its large sample theory, so that both bias and variance matter asymptotically. The main result shows that there exists a computationally convenient estimator that achieves optimal minimax robust properties. It is semiparametrically efficient when the model assumption holds, and, at the same time, it enjoys desirable robust properties when it does not.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.