Abstract

Scheduling is a major concern in construction planning and management, and current construction simulation research typically targets the shortest total duration. However, uncertainties are inevitable in actual construction, which may lead to discrepancies between the actual and planned schedules and increase the risk of total duration delay. Therefore, developing a robust construction scheduling technique is of vital importance for mitigating disturbance and improving completion probability. In the present study, the authors propose a robustness analysis method that involves underground powerhouse construction simulation based on the Markov Chain Monte Carlo (MCMC) method. Specifically, the MCMC method samples construction disturbances by considering the interrelationship between the states of parameters through a Markov state transition probability matrix, which is more robust and efficient than traditional sampling methods such as the Monte Carlo (MC) method. Additionally, a hierarchical simulation model coupling critical path method (CPM) and a cycle operation network (CYCLONE) is built, using which construction duration and robustness criteria can be calculated. Furthermore, a detailed measurement method is presented to quantize the robustness of underground powerhouse construction, and the setting model of the time buffer is proposed based on the MCMC method. The application of this methodology not only considers duration but also robustness, providing scientific guidance for engineering decision making. We analyzed a case study project to demonstrate the effectiveness and superiority of the proposed methodology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call