Abstract
In optically stimulated luminescence (OSL) dating, statistical age models for equivalent dose (D<sub>e</sub>) distributions are routinely estimated using the maximum likelihood estimation (MLE) method. In this study, a Markov chain Monte Carlo (MCMC) method was used to analyze statistical age models, including the central age model (CAM), the minimum age model (MAM), the maximum age model (MXAM), <i>etc.</i> This method was first used to obtain sampling distributions on parameters of interest in an age model using D<sub>e</sub> distributions from individual sedimentary samples and subsequently extended to simultaneously extract age estimates from multiple samples with stratigraphic constraints. The MCMC method allows for the use of Bayesian inference to refine chronological sequences from multiple samples, including both fully and partially bleached OSL dates. This study designed easily implemented open-source numeric programs to perform MCMC sampling. Measured and simulated D<sub>e</sub> distributions are used to validate the reliability of dose (age) estimates obtained by this method. Findings from this study demonstrate that estimates obtained by the MCMC method can be used to informatively compare results obtained by the MLE method. The application of statistical age models to multiple OSL dates with stratigraphic orders using the MCMC method may significantly improve both the precision and accuracy of burial ages.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.